POLYNOMIAL DECAY FOR SOLUTIONS OF HYPERBOLIC INTEGRODIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
Hyperbolic singular perturbations for integrodifferential equations
We study the convergence of solutions of * Co E-m (T.-J. X 0096-3 doi:10. e2u00ðt; eÞ þ u0ðt; eÞ 1⁄4 ðeAþ BÞuðt; eÞ þ R t 0 Kðt sÞðeAþ BÞuðs; eÞds þf ðt; eÞ; tP 0; uð0; eÞ 1⁄4 u0ðeÞ; u0ð0; eÞ 1⁄4 u1ðeÞ; 8< : to solutions of w0ðtÞ 1⁄4 BwðtÞ þ R t 0 Kðt sÞBwðsÞdsþ f ðtÞ; tP 0; wð0Þ 1⁄4 w0; when e ! 0. Here A and B are linear unbounded operators in a Banach space X , KðtÞ is a linear bounded opera...
متن کاملBounds of Solutions of Integrodifferential Equations
and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...
متن کاملConvergence for Hyperbolic Singular Perturbation of Integrodifferential Equations
By virtue of an operator-theoretical approach, we deal with hyperbolic singular perturbation problems for integrodifferential equations. New convergence theorems for such singular perturbation problems are obtained, which generalize some previous results by This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, an...
متن کاملLyapunov stability solutions of fractional integrodifferential equations
Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.
متن کاملPolynomial spline collocation methods for second-order Volterra integrodifferential equations
where q : I → R, pi : I → R, and ki : D → R (i = 0,1) (with D := {(t,s) : 0 ≤ s ≤ t ≤ T}) are given functions and are assumed to be (at least) continuous in the respective domains. For more details of these equations, many other interesting methods for the approximated solution and stability procedures are available in earlier literatures [1, 3, 4, 5, 6, 7, 8, 11]. The above equation is usually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2008
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089508004436